A note on distance matrices with unicyclic graph realizations
نویسندگان
چکیده
منابع مشابه
A note on tree realizations of matrices
It is well known that each tree metric M has a unique realization as a tree, and that this realization minimizes the total length of the edges among all other realizations of M . We extend this result to the class of symmetric matrices M with zero diagonal, positive entries, and such that mij +mkl ≤ max{mik +mjl,mil +mjk} for all distinct i, j, k, l.
متن کاملA note on doubly stochastic graph matrices
A sharp lower bound for the smallest entries, among those corresponding to edges, of doubly stochastic matrices of trees is obtained, and the trees that attain this bound are characterized. This result is used to provide a negative answer to Merris’ question in [R. Merris, Doubly stochastic graph matrices II, Linear Multilin. Algebra 45 (1998) 275–285]. © 2005 Elsevier Inc. All rights reserved....
متن کاملA note on Fiedler vectors interpreted as graph realizations
The second smallest eigenvalue of the Laplace matrix of a graph and its eigenvectors, also known as Fiedler vectors in spectral graph partitioning, carry significant structural information regarding the connectivity of the graph. Using semidefinite programming duality we offer a geometric interpretation of this eigenspace as optimal solution to a graph realization problem. A corresponding inter...
متن کاملA Note on Distance-based Graph Entropies
A variety of problems in, e.g., discrete mathematics, computer science, information theory, statistics, chemistry, biology, etc., deal with inferring and characterizing relational structures by using graph measures. In this sense, it has been proven that information-theoretic quantities representing graph entropies possess useful properties such as a meaningful structural interpretation and uni...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1987
ISSN: 0012-365X
DOI: 10.1016/0012-365x(87)90059-8